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4. STATEMENT OF THE PROBLEM STUDIED 
In the last decade, MMICs have played a leading role in the design of microwave 

communications systems. As the fabrication technologies of these devices have matured, both 

military and commercial applications have demanded smaller and denser MMICs operating over 

larger bandwidths and at higher operating frequencies (into the Ka and U bands). This has lead to 

an increased need for more rigorous analyses that explicitly model the electromagnetic interactions 

within these devices. Although, it is instructive to isolate each element of the MMIC and analyze 

them independently, proper characterization of densely packaged circuits require the rigorous 

analysis of entire circuits simultaneously, or large blocks of circuits. Specifically, electromagnetic 

effects such as coupling, radiation, surface waves, and other affects that lead to induced signals on 

neighboring signal lines need be accounted for to accurately characterize the circuit devices. 

The objective of this research has been to develop a MMIC circuit simulator based on direct 

time-domain solutions of Maxwell's equations. The simulator is capable of analyzing MMICs 

using either the traditional finite-difference time-domain (FDTD) method, an explicit planar 

generalized Yee-algorithm (PGY) based on generalized unstructured grids, or the implicit Finite 

Element Time-Domain (FETD) method. The FDTD method is a highly robust and efficient 

computational method that is well suited for circuits whose geometries are separable in a Cartesian 

coordinate system. The PGY and the FETD methods, which are based on volume discretizations 

using unstructured grids, are much better suited for analyzing circuits with complex geometries. 

The FETD offers a higher-order approximation of the fields. Furthermore, it can be posed in a 

form that is unconditionally stable. As a result, the time step is not restricted by a Courant limit. 

Unfortunately, in many applications it is still more computationally intensive than the PGY method 

since it requires a sparse matrix solution required at each time iteration. 

In the course of the development of these algorithms, it was found that most non-orthogonal 

FDTD methods, including locally-deformed FDTD methods, non-orthogonal FDTD methods, and 

the PGY method, suffer from late time instability. Typically, these late time-instabilities will 

corrupt the analysis of large resonant structures requiring large numbers of time steps. Upon 

investigating, it was found that these algorithms are not well posed. Subsequently, a sufficient test 

for well-posedness was developed. Secondly, methods were introduced that rendered these 

algorithms to be well posed were developed. 
A second objective of the proposed research has been to develop efficient high-performance 

parallel algorithms for the implicit and explicit time-domain methods. Due to the characteristics of 

volume discretizations, the FDTD, PGY, and FETD methods can be extremely computationally 

intensive when solving large resonant structures. It has been shown that these algorithms have 

high degrees of parallelism, and very large problems can be efficiently analyzed on high- 

performance parallel algorithms. Explicit schemes, such as the FDTD and PGY methods, are most 

1 
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efficiently parallelized using a divide and conquer scheme based on a spatial decomposition of the 

volume mesh. On the other hand, a divide and conquer approach, such as a spatial decomposition 

in conjunction with a parallel iterative linear system solution such as the Conjugate Gradient (CG) 

method, for implicit schemes such as the FETD is not necessarily optimal. This is because as the 

problem size increases, the condition number of the sparse matrix comensurately increases. 

Subsequently, the number of iterations required to converge at each time step grows with the 

problem size. A more efficient approach has been found that is based on the method of Lagrange 

multipliers. Specifically, a spatial decomposition is performed on the global mesh. Each 

subregion is then mapped to a processor and solved using a sparse direct solver locally. 

Constraints enforcing the continuity of the tangential fields are impressed across each interface 

using Lagrange multipliers, leading to a global linear system of equations. This method has been 

referred to as the Finite-Element Tearing and Interconnecting (FETI) algorithm. It has been found 

that this method actually results in super-linear speedups for the FETD algorithm due to the nature 

of the condition number of the linear system. 

A final objective of the research has been to develop the capability of analyzing both linear and 

non-linear circuits. To this end, lumped circuit models have been introduced into the FDTD and 

PGY algorithms using a state variable technique. The state variable method allows for the 

inclusion of linear and non-linear devices to be directly incorporated into the FDTD and PGY 

simulations in a manner that is device independent. Specifically, a device library can be created 

such that the FDTD algorithm is independent of the device. Rather, the port voltages or currents 

are provided to the generic state variable model, and the output port currents or voltages are then 

returned to the FDTD method and then applied to the local fields- 
Other subsequent venues have been pursued through the course of this research that have 

spawned from the development of the above algorithms. Initially, one limitation of finite methods 

such as FDTD or FETD is when solving unbounded problems, a mesh truncation condition must 

be introduced which efficiently and accurately terminates (or absorbers) all radiation incident upon 

an exterior boundary. For many applications, such as computing the DC bias of a non-linear FET 

device, traditional pseudo-differential based absorbing boundaries introduce significant error. 

Subsequently, alternative absorbing boundary conditions were pursued. This lead to the 

development of an anisotropic perfectly matched layer (PML) medium for the truncation of FDTD 

lattices. This method, which is very similar in characteristic to Berenger's split-field PML, is 

based on a physical interpretation of the perfectly matched layer medium as a uniaxial medium 

rather than a mathematical medium. This has lead to the immediate extension of the PML to 

inhomogeneous media, lossy media, dispersive media, and non-linear media. 

Another development that has stemmed from this research is the development of an algorithm 

which extends FDTD and non-orthogonal FDTD to periodic structures. This work was initiated by 
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the Signature Technology Laboratory at Georgia Tech. Research Institute. The difficulty with 

existing periodic FDTD based algorithms was that they were inherently unstable. To circumvent 

this, a new algorithm based on a split-field formulation has been developed for both orthogonal 

and non-orthogonal FDTD methods that efficiently treats the scattering and radiation by periodic 

structures that is stable for all angles of incidence, and highly efficient. 

5. SUMMARY OF IMPORTANT RESULTS 

I.    Accomplishments 
As per meeting the objectives outlined in Section 4, a summary of the specific accomplishments 

of this research program are encapsulated as follows: 

1) Development of the planar generalized Yee-algorithm (PGY), an explicit time-domain 

solution of Maxwell's equations that assumes a volume discretization based on an 

unstructured grid [1-5]. The PGY algorithm exploits the planar symmetry of microwave 

circuits composed of planar stratified circuits and vias to greatly reduce the memory 

overhead. This algorithm has been successfully applied to large circuits and antennas. 

2) The development of a test of well-posedness for explicit time-dependent solutions of 

Maxwell's equations based on staggered grids. From this theory, well-posed PGY 

algorithms and non-orthogonal FDTD algorithms have been successfully derived. 

3) The development of an unconditionally stable implicit finite-element time-domain (FETD) 

solution oftheinhomogeneous vector wave equation [6, 7]. x  A 

4) The development of a highly scalable parallel algorithms for the finite-difference time- 

domain (FDTD) method, the generalized Yee and PGY algorithms, and the FETD method 

[8-12]. 
5) The development of a scalable parallel algorithm for the solution of sparse matrices arising 

from the FEM discretization of the vector wave equation. The technique is based on the 

method of Lagrange Multipliers, and has been used for both frequency dependent [13] and 

time-dependent FEM simulations [7]. 
6) The development of a uniaxial perfectly matched layer medium (UPML) for the truncation 

of FDTD lattices. This technique provides absorption on the order of 90 dB over broad 

frequency bands. The UPML has been successfully applied to inhomogeneous media, 

lossy media, dispersive, and non-linear media [14, 15], as well as to the non-orthogonal 

FDTD algorithm [16], and the frequency-domain FEM method [13]. 

7) This work has helped to promote collaborative efforts with engineers at Hughes Aircraft 

Company, Georgia Tech Research Institute and the Jet Propulsion Laboratory. 



S. Gedney, Rigorous Analysis of Large Scale MMIC Circuit Devices 4/98 

8) This effort has supported 3 M.S. students, 2 Ph. D. students, and a post doctoral 

associate. 
9) Based on this effort 12 journal articles and 5 book chapters have been published, 3 other 

journal articles are currently under review, and 12 papers have been published in the 

proceedings of International Symposia.       f 
In the remainder of this report, summaries of these accomplishments are provided. Specifically, 

in Section II, the explicit planar generalized Yee-algorithm is summarized with some examples of a 

few of the many microwave circuits analyzed with this technique. Section III introduces the 

concept of well-posedness, and test for well posedness for general Yee schemes based on 

conformal and nonorthogonal grids. It is shown that originally posed algorithms such as the 

contour patch FDTD method, the nonorthogonal FDTD method, and the PGY method are actually 

ill-posed. Well-posed methods are proposed and demonstrated. Section IV summarizes the 

uniaxial PML method and its implementation within the FDTD method. It also demonstrates that 

the uniaxial PML can be used to match generalized inhomogeneous lossy media. Through 

validation its effectiveness and application within the FDTD method is presented. 

Sections V and VI deal with implicit schemes based on the finite-element method (FEM). 

Section V presents a parallel frequency dependent FEM with a uniaxial PML mesh termination. 

The parallel scheme is based on the method of Lagrange multipliers and excellent speedups are 

recorded. This method is extended to an unconditionally stable implicit finite element time-domain 

(FETD) method in Section VI. 
Section VII extends the nonofthogonal FDTD method to periodic structures. To this end, a 

stable FDTD analysis based on orthogonal grids is first introduced. The advantage of the method 

introduced is that it is inherently stable for all angles of incidence, unlike previous methods. This 

method is then extended further to a nonorthogonal grid FDTD method. 

Finally, section VIII discusses the incorporation of linear and nonlinear lumped devices into 

FDTD and PGY simulations using the state variable methods. The application of a linear amplifier, 

a nonlinear diode, and a nonlinear amplifier are presented. 
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II.   Explicit Planar Generalized Yee Algorithm 
A number of explicit methods for the solutions of Maxwell's equations based on non-orthogonal 

structured [17, 18] and unstructured methods [1-5, 19] have been proposed. The planar 

generalized Yee-algorithm (PGY) algorithm [3-5] has the advantage that it models three- 

dimensional geometries with planar symmetry via a mesh that is fully unstructured along two- 

dimensional cross-sections and structured along the third dimension. The PGY algorithm is based 

on the discretization of Ampere's and Faraday's laws in their integral form by projecting the vector 

fields onto the edges of a dual, staggered unstructured grid. By exploiting planar symmetry, 

significant memory savings can be realized. Based on such a discretization of the fields, and 

employing a central difference approximation for the time-derivatives, an explicit time-marching 

solution for vector field updates can be derived. The matrices are highly sparse, although due to 

the unstructuredness of the grid they must be stored. Fortunately, due to the regularity of the grid 

along one dimension, only the matrices due to one layer of cells are actually stored. This greatly 

reduces the overall memory requirement. The explicit update scheme is then expressed as a linear 

operator as 

d"+12 = d"-i + AtChAhb" (!) 

b" = b"~l - AtCeD£Add" V " (2) 

where b and d are the vector of discrete vector flux densities associated with the primary and 

secondary cell faces, respectively, the superscripts refer to discrete time, Ce and Q represent the 

discrete contour integrals of the electric and magnetic fields about primary and secondary cell faces, 

respectfully, D£ is a diagonal matrix with entries representing the inverse of the relative 

permittivity, and Ab and Ad are the projection matrices. The role of the projection matrices are to 

project the normal face fields onto the dual edges passing through the faces. Note that for 

simplicity the domain is assumed to be lossless and non magnetic. The explicit field updates 

provide an extremely efficient computational technique that is second-order accurate for the 

simulation of the time-varying fields, and is stable, providing the time step satisfies the stability 

criterion [3-5]. 
An example of the simulation of a fields within a Wilkinson power divider is first presented. 

Figure 1 illustrates the geometry of a Wilkinson power divider designed for 3 dB power division 

(equal phase) at 32 GHz that is matched to 50 Q. microstrip lines. A 100 Q chip resistor is placed 

between ports 2 and 3 for isolation. The microstrip device is printed on a 15 mil TMM substrate 
(£,. = 3.25) that is backed by a ground plane. A two-dimensional unstructured mesh used to 

analyze this circuit consisted of roughly 3200 arbitrarily shaped quadrilaterals. Along the vertical 

direction, the resultant 3-dimensional mesh was 25 cells high (uniformly spaced). The fields on 

the exterior boundary are updated using the second-order Higdon boundary condition. Figure 2 
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illustrates the S-parameters SJJ and S21 computed for this device using the PGY-algorithm. It is 

noted that S31 = S21 due to geometric symmetry. These results are also compared with simulated 

results using the FD-TD algorithm. The FD-TD model of the Wilkinson power divider was bas~ed 

on a uniform orthogonal grid (Ax = 0.0573 mm, Av= 0.0573 mm, and Az= 0.0635 mm). The 

curved boundaries were approximated by a staircase approximation, resulting in discretization 

error. Furthermore, due to the uniformity of the grid, the length of the quarter-wave transformers 

(the curved sections) were slightly lengthened. The combination of these lead to an upward shift in 

the resonant frequency and the other deviations from the PGY simulated results. r 
As a second example, consider the simulation of a transition from a 50 Q grounded coplanar 

waveguide (GCPWG) to a 50 Q microstrip line. The structured was printed on a 25 mil Alumina 

substrate, and the GCPWG consisted of a center conductor that was 10 mils wide, two symmetric 

outer fins 40 mils wide, with a gap of 5 mils between the center strip and the outer fins (see Fig. 

3). Circular vias spaced 50 mils on center interconnected the fins to the ground plane. Figure 4 

illustrates a comparison of results simulated using the PGY algorithm with measured results 

performed by Hughes Aircraft Company. Overall, good agreement is observed. It is noted that 

the PGY simulation assumed a lossless structure, where -0.6 dB of conduction loss at 18 GHz is 

expected in S21. 
Top View 

Output port 
"21 

Side View 

Input port 

er =3.25 

)^- Chip 
Resistor 

\//777y//, . L 
T 

.9144 mm 

Fig.   1     Ka-band Wilkinson power divider (32 GHz). Source: S. Gedney and F. Lansing, IEEE 
Transactions on Microwave Theory and Techniques. 
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Fig. 3 Abrupt Transition from 50 Q GCPWG to 50 Q microstrip to 50 Q GCPWG printed on a 25 

mil Alumina Substrate, (a) Cross section of the GCPWG circuit with 50 mil spaced vias. (b) 
Top view of the abrupt transition (fabricated by Hughes Aircraft). 
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Fig. 4       Computed and Measured S-parameters for a GCPWG - microstrip transition (Measurements by 
Hughes Aircraft) 
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III    Well Posed Non-Orthogonal FDTD Methods 

1.  Well posedness 
The coupled difference equations in (1) and (2) are explicit in nature and are conditionally stable. 

These equations are said to be stable, providing the time step satisfies the criterion [20]: 

2 
At< (3) 

where 
M=ChAhCeD£Ad. (4) 

This stability condition is a necessary but not a sufficient condition to ensure the strict stability 

of the coupled difference equations in (1) and (2). The formulation must also be well posed [21]. 

If the formulation is not well posed, then it can be unconditionally unstable. The definition of well 

posedness will be based on the matrix M. 
Definition. The coupled system in (1) and (2) is symmetric hyperbolic if M is a Hermitian 

matrix. It is called strictly hyperbolic if the eigenvalues are real and distinct, strongly hyperbolic if 

the eigenvalues are real and there exists a complete system of eigenvectors, and weakly hyperbolic 

if the eigenvalues are real [21, Sect. 6.3]. The system will be ill posed if it is not at least strongly 

hyperbolic. 
To aide in the understanding of the above definition, it is instructive to perform an eigenvalue 

analysis of the coupled explicit equations. To this end, the vector 

~b" 
w" = 

f+i 

is introduced such that (1) and (2) are reposed as a first-order difference equation: 

w» = Gw"-\ 

where G is referred to as the growth matrix, and is more explicitly written as: 

G = \    7 -*CeDeAd 

[AtChAh    I-At2ChAbCeDEAd 

It can be shown that the eigenvalues of G are expressed as [20]: 

A/2A„, 
A, \-- (At2lm] 

{    2    J 

2 

-2 
(Athm) 

{    2    J 

(5) 

(6) 

(7) 

(8) 

where Xm are the eigenvalues of M. If the time step satisfies (3) and Am is positive real, then the 

term within the radical will be negative. Thus, (8) can be rewritten as 

XG = 1- 
Af2A.. '' At2X, 

1 
^  WA, (9) 
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It is seen immediately that |AC| = 1. This is true for all Xm that are real and > 0 providing (3) is 

satisfied. Interestingly, this is expected since without dissipation the total energy in the system is 

unchanged with time. If (3) is not satisfied, the term under the radical sign is positive, and it is 

immediately seen that of the two eigenvalues of G derived from (8) will be purely real and at least 

one of them will lie outside of the unit circle. 

If the system is weakly hyperbolic, then a complete set of eigenvectors does not exist and G will 

be ill-conditioned which can lead to instabilities. In such a case, an eigenvalue analysis is not 

sufficient to determine stability. Following a pseudo spectral analysis it can be seen that an ill- 

conditioned system can go unstable despite its eigenvalues being on the unit circle due to the 

sensitivity of the system to small perturbations [22,23]. 

Finally, if M has any complex eigenvalues it can easily be shown that the system will be 

unconditionally unstable. Specifically, assume that there exists a Xm that is complex. Assuming 

that At2\Xm\ < 4, it can be shown that the eigenpair for XQ derived from (8) has one solution inside 

the unit circle and the other is outside the unit circle. As an example, let At \X,„\ = l±jl.e-3, 

then XG = 1.000577Z ± 60°, 0.999423Z ± 60°. Having a XG occur outside of the unit circle will 

lead to instability since stability requires that \G\ < 1, which obviously is no longer satisfied. 

The question that remains is under what practical conditions will (1) and (2) be well posed. 

Initially, consider the simplest case of a dual orthogonal grid that is cubic (i.e., Ax = Ay = Az). 

Under such conditions, M is a real symmetric matrix. Subsequently, the system is symmetric 

hyperbolic, and is well posed. For a non cubic grid, M is not symmetric. Nevertheless, it is easy 

to show that M = QQ, can be symmetrized through a diagonal transformation and the FDTD 

method is strongly hyperbolic. 
Next, assume that the mesh is irregular and non-orthogonal. For sake of illustration neglect the 

projections Ab and Ad such that M = ChCeDE. Interestingly, due to the complementary nature of 

the line integrals over the dual grid the system is strongly hyperbolic. This is true even for 

inhomogeneous media. Unfortunately, this formulation is only first-order accurate for general 

grids. Nevertheless it provides useful insight to the more general formulation. 

Finally, for the most general case when the grid is irregular and non orthogonal and the 

projection operators are included, Mis non symmetric. Because of the product of matrices, even if 
ChCeDe is symmetric, or is symmetrizable, M may not be. If the matrices Ab and Ad are non- 

symmetric, M will likely have complex eigenvalues. As originally proposed, the projection 

operators Ad and Ab derived from the NFDTD or DSI methods are non-symmetric if the grid is 

irregular and non orthogonal. Subsequently, both formulations can potentially suffer from late 

time instabilities. This is demonstrated by Roden [24]. 
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If one can pose a technique based on the DSI/GY algorithms or NFDTD algorithms that leads to 
M having real and distinct eigenvalues, then the problem can be recast in a well posed manner. It 
is observed that if Ad and Ab are symmetric and well conditioned and sr is constant such that 
De = sr I, then M will have real and distinct eigenvalues (what defines well conditionedness of Ab 

and Ad will be described in the next section). Interestingly, if Ad and Ab are symmetric the reaction 
between neighboring fields due to the projection operators are equivalent. Methods by which to 

derive symmetric projection matrices without sacrificing accuracy are presented in [20]. 
Unfortunately, if er is inhomogeneous this may introduce complex eigenvalues inM even if Ab 

and Ad are symmetric. This is principally due to the non-reciprocal nature that results from the 
projections (e.g., D£Ad * AdDs). An effective way to force symmetry in the projection operator is 

to approximate (6.49b) as: 

bn=bn-x-&CeDlAdDld"~K 0°) 

Then, G is rewritten as: 

G 

and 

/ -MCeDlAdE>l 

MChAh    I-At2ChAhCeD]AdDJ 

i        i 

(ID 

M*Ms=ChAbCeD]AdD]. 02) 
It can be shown that if Ad and Ab are symmetric and well conditioned, then Ms has real and 

distinct eigenvalues even for inhomogeneous medium. 

It must be realized that Ms is an approximation. The projection operation e = D*AdD] d maps 

the normal flux density to the field intensity projected on the edge passing through the face. 

Examining the i-th entry of e: 
j      M d 

where, ad   is the entry of matrix Ad in the i-th row andy-th column. The diagonal term of the 
ij 

projection operation is unchanged by the use of Ms.   Whereas, the off diagonal terms are 

normalized by an effective permittivity expressed as the geometric mean of the permittivities of the 
two adjacent edges. While this is an approximation, it is demonstrated in Section 6.5.4 that this 

approximation does not degrade the accuracy of the NFDTD or DSI/GY algorithms.] 

10 
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2. Validation 
A simple example is now presented to study the accuracy of the symmetric projection operators. 

To this end, a benchmark test case of a circular dielectric ring in a rectangular PEC cavity is studied 

[25]. The geometry is provided in Fig. 5. Both unstructured and structured grids were generated 

to analyze this problem using the DSI and NFDTD algorithms, respectively. A cross-section of the 

structured and unstructured grids are illustrated in Fig. 4. 

' The fields in the resonant cavity were simulated using the original NFDTD algorithm and the 

well posed NFDTD algorithm ((?>'>") as well as the original PGY algorithm and the well-posed 

algorithm PGY. The fields in the cavity were driven by injecting a vertically oriented current 

density placed at a non symmetric point described by: 

where tw = 0.2122 ns, and t0 = 3tw. The vertical field was probed in the cavity and the-time 
simulation was performed for 25,000 time steps with At = 4.5 ps. The vertical field was Fourier 

transformed using an FFT, and the resonant frequencies were extracted. Table 1 presents the 

resonant frequencies for the first 4 modes as calculated using the symmetric PGY and NFDTD 

methods and the measured dominant mode [25]. These results are also compared to those obtained 

using an implicit FETD method [6]. The results were also obtained using the non-symmetric PGY 

and NFDTD algorithm (GavS). The resonant frequencies compared to within 0.1 % as compared 

to the well posed methods. It is further noted that for this case, the non-symmetric PGY method 

ran for 30,000 time steps before going unstable. The symmetric PGY and NFDTD methods ran 

for 250,000 time steps and still showed no signs of instability. 
The dielectric ring in cavity problem was repeated when the dielectric relative permittivity was 

increased to 9.8. For this case, the grid density in and near the ring was roughly doubled to 

properly resolve the fields. The calculated resonant frequencies are presented in Table 2. Again, 

the symmetric DSI/GY simulation was stable for over 250,000 time steps. Interestingly, the 

symmetric NFDTD simulation did eventually go unstable in the very late time for this geometry. 

Observing the refined NFDTD lattice, it was observed that there were four cells with highly obtuse 

interior angles. This lead to an ill-conditioned matrix as discussed in the previous section. This is 

a penalty of structured gridding. 

11 
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Fig.   5     Dielectric ring in a rectangular PEC cavity (a = 324 mm, b = 121 mm, c = 43 mm. 

The ring is centered at u-/ = 207.25 mm, w2 = 116.75 mm, b/2 along the v-direction 
' and rests on the ground plane. The ring has a height of h = 39 mm, inner radius n = 

16.65 mm, and outer radius rj = 26.75 mm.) 

Table 1 
Resonant Frequencies of the Dielectric Ring Loaded Cavity, sr = 2.06 

Mode Meas. WP-DSI (jsym FETD 

kOl 1.258 GHz 1.258 GHz 1.258 GHz 1.259 GHz 
k02 - 1.509 GHz 1.509 GHz 1.512 GHz 
k03 - 1.836 GHz 1.835 GHz 1.841 GHz 
k04 - 2.158 GHz 2.161 GHz 2.175 GHz 

Table 2 
Resonant Frequencies of the Dielectric Ring Loaded Cavity, er = 9.8 

Mode WP-DSI Qsym FETD 

kOl 0.9520 GHz 0.9520 GHz 0.9518 GHz 
k02 1.415 GHz 1.415 GHz 1.420 GHz 
k03 1.608 GHz 1.612 GHz 1.615 GHz 
k04 2.024 GHz 2.026 GHz 2.034 GHz 

12 
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IV Uniaxial  Perfectly Matched Layer Truncation  of Computational 
Space for Simulation of Unbounded Domains. 

1. Introduction 

Explicit time-domain methods such as the finite-difference time-domain (FDTD) method and the 

planar generalized Yee (PGY) algorithm have been highly effective for the analysis of practical 

microwave circuit devices and antennas. One of the most challenging aspects of these methods is 

implementing absorbing boundary conditions that can accurately truncate the mesh over broad 

frequency bands. The perfectly matched layer (PML) absorbing media introduced by J.-P. 

Berenger [26] has been demonstrated to be a highly effective method for the termination of FDTD 

lattices [27,28]. and can result in reflection errors as minute as-80 dB to-100 dB. Recently, it 

has been shown that the PML method can be reposed in a Maxwellian form as a uniaxial 

anisotropic medium [14, 15, 29]. It has been demonstrated that the uniaxial medium can be 

perfectly matched to lossy, inhomogeneous, dispersive, isotropic and anisotropic medium. Most 

significant is that the extension to such complex media in a FDTD implementation is quite trivial. 

Furthermore, since the uniaxial PML formulation is Maxwellian and not restricted to an orthogonal 

field splitting and it can be easily extended to more generalized methods such as the non-orthogonal 

FDTD method [16]. The focus of this summary will be on the efficient implementation of the 

uniaxial PML method and the expected accuracy. The simple extension to more complex media 

will also be discussed in the context that its implementation within an existing FDTD code is quite 

trivial. 

2. The Uniaxial PML 

It was shown in [14, 15, 29] that an arbitrary polarized wave incident on a planar half space 

(defined by the z = 0 plane) will be perfectly transmitted provided that the half space is a uniaxial 

medium with constitutive parameters 

£ = e0er 

s~ 0 0 s,    0 0 

0 sz 0 , H = VoV-r 0      5. 0 

0 0 s;
l\ 0    0 sZ 

(14) 

where sr and \ir are defined by the medium of the upper half space. It can be demonstrated that this 

perfectly transmitting property is still valid if the upper half space is inhomogeneous, lossy, 

dispersive, and even anisotropic. 
The intention of the PML medium is to rapidly attenuate waves entrant into the medium. Thus a 

suitable choice for sz is: 

(15) 
*z = ^ + 7Si7 

13 
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Given the propagation constant of the incident wave to be yl = a1. +jß'-, then it can be shown that 

the propagation constant of the transmitted wave in the uniaxial PML region is [ 15] 

^=H+«5r)+yM-a-;^)- (16) 

The real part of ya
z leads to the attenuation of the wave. Thus, the loss term az will lead to the 

attenuation of all propagating modes, and the real term KZ will lead to the amplification of the 

attenuation of all evanescent modes incident on the planar interface. As a result, this 

parameterization is analogous to the generalized PML introduced by Fang et al. [30], which is an 

extension of the original Berenger formulation. 

The uniaxial PML can be used to terminate a three-dimensional FDTD space accurately and 

efficiently. To this end, the FDTD lattice is terminated on all 6 sides via planar PML media, which 

are backed by a PEC wall. Under such circumstances, it is recognized that the planar interfaces 

will overlap in what is referred to as the corner regions. In order to derive the constitutive relations 

in these corner regions, it is reasonable to match the PML to the adjacent uniaxial medium. For 

example, let the upper half space have permittivity and permeability tensors: 

e\ - £osr 0 
0 0 

0 
0 .  /*1=/V; 0 

0 

0 

0 

0 
0 (17) 

Then, assuming an arbitrary polarized plane wave will be perfectly transmitted into the1 lower half 

space separated by a z = constant plane if the permittivity and permeability tensors are defined as: 

€2 * so£r 

Jx 
0 

0 

0 

0 
0 

Sr 

Ö 
0 

0 
s, 
0 

0 
0 V2 =PoVr 0 

0 

0 

0 
0 

s. 
Ö 
0 

0      0 
sz     0 

0    s7l 

(18) 

This can be further generalized to a >' interface, leading to the general anisotropic tensors 

£ = s0srs,   fx = n0Hrs,   and s = 

y.- 

0 

0 

0 

0 

■My 
5- 

(19) 

where, 

sx = Kx + 
J(0£0 

,sv = Kv + 
J(oe0 

, s- = K-,+■ 
JO)£0 

(20) 

Within this uniaxial region, Maxwell's curl equations are expressed as: 

VxH = jo)£0£r(o))sE,   VxE = -jco/d0sH (21) 

It is from these equations that the explicit field updates will be derived. As an example, consider 

the update expression for Ez. Introducing the constitutive relation 

14 
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D7 = e0sr^Ez. (22) 
s. 

where sr is assumed to be a function of* and y, it follows from (6) - (8): 

iHy-fHx=ja>D:+^D:. (23) 

Subsequently, this leads to the discrete field update for D:: 

ÜL-fL. , , (( \ ( \ \ 

2       Ar + 2£„ 2       A/ + 2e0 

Lfit _ tjn /Ax- Un 14" /Av 

(24) 

(25) 

Given Dz, an auxiliary relationship can be derived for Ez as 

s.D. = e0s,.sxE: , or 
j(£>K.D._+^D. = e0sr(}G)KxE.+^E.). 

Then, transforming (25) into the time-domain, approximating the time derivatives using a central 

difference approximation, and averaging ^-D. and ^E. in time, this results in a second-order 

accurate explicit update equation: 
axAt 

£,+l     =£„-i        *     2£„. 1 
/.y.A+i    "     2e0 "I.JM\    "     2e0   j 

'     2£° 2E° (26) 

Similar update equations can be derived for the remaining field components. 

The uniaxial PML method is easily extended to more general media such as lossy media, 

dispersive media, or non-linear media. This can easily be done through the addition of an 

additional auxiliary equation(s) [15], which is a simple extension of the above algorithm. 

3.  Matching PML to Generalized Media 

In the previous section, the PML was matched to a homogeneous medium supporting plane 

wave type solutions impinging on the PML boundary. Because the PML is matched for all angles 

of incidence and polarizations, one could generalize this to arbitrary finite sources, or scattered 

fields emanating from complex geometries by using plane wave expansions of the fields. 

However, a more general proof is needed to demonstrate its effectiveness for matching to waves 

propagating in inhomogeneous media. This is the focus of this section. 

Consider a wave propagating in an inhomogeneous media along an axial direction, chosen 

arbitrarily to be the z-axis. It is assumed that the material medium is inhomogeneous along the 

transverse axes (x,y), and invariant along the axial direction.   The electromagnetic waves 

15 
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supported by such a medium can be decomposed into TEZ and TMZ polarized waves.  In this 

medium, we pose time-harmonic solutions to the wave equation of the form: 

TEZ:      H2=hz(x,y)e-y--:\ (27) 

TMZ:      Ez=ez{x,y)e~7'-Z. (28) 

where, Ez = 0 for the TEZ polarized waves, and Hz = 0 for the TMZ polarized waves.   From 

Maxwell's equations, the remaining fields can be derived from the axial fields as: 

-jcojj. dHz 
E = 

k2 + y2
z   dy 

H    -r= 8H-- 
x~k2 + y2  dx' 

E       jay   dH. 
y    k2 + y\  dx 

H, = -^- 
dH, (29) 

' k2 + yl   dy ' 

E.=0, 

for the TEZ polarization. The TMZ fields are derived from (28) leading to a dual expression of 

(29). 
A PML half space is interfaced with the inhomogeneous medium in the z = 0 plane. It is 

assumed that the transversely inhomogeneous material profile extends through the PML. From 

(19), the PML has the constitutive relations related to the z-normal interface: 

e = s(x, y) 

sz 

0 

0 

0 

sz 

0 

0 
0 
-1 

^ = n{x, y) 

0 0 

0 
_-i 

s. 

0    s. 

0    0    s. 

where s and n can be complex. The generalized wave equation is then derived, and the axial field 

solutions are then derived for the dual polarizations: 

TEZ:      H,=s.hz{x,y)e-S-J--Z. (30) 

TM, Ez =s.ez(x,y)e r
szY: (31) 

where, hz(x,y) and ez(x,y) are identical to those in (27) and (28), respectively. Note that the sz 

weighting the normal fields is consistent with Gauss' laws;. For the TEZ polarized case, the 

remaining fields are again derived from Maxwell's equations in the uniaxial medium, leading to: 

E„ = 

-jco/j.   1 dH, 
k2 + y2 sz  dy 

jcofi_ 1 dH, 

T 

-yz     1 dH: 

Hv = 

k  +yz sz  dx 

-y.     1 dHz 

k2 + y2 sz  dy 
(32) 

kL + yz sz  dx 

Ez=0, 

The TMZ fields are simply the dual of (32). 
Finally, it is seen that inserting the axial fields in (30) in (32), and (27) in (29), the transverse 

fields are continuous across the z = 0 plane. Furthermore, it is seen that the wave transmitted into 

the PML medium has the same characteristic wave impedance relative to the axial direction as that 

16 
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of the impinging waves for both polarizations. Subsequently, the proposed uniaxial medium is 

perfectly matched to the inhomogeneous space. 

4. Reflection Error 

The preceding theoretical analyses have assumed the PML to be a half space. Employing the 

PML to truncate the FDTD lattice boundaries, the PML have a finite thickness and terminated by a 

boundary. If the exterior boundary is assumed to be a perfectly electrical conducting (PEC) wall, 

there will be reflected power back into the interior FDTD region. The reflection can be calculated 

using a simple transmission line analysis and will have an amplitude of: 
R<Q\ = e-2cr,srdcose (33) x 

where 0 is the angle of incidence, d is the thickness of the PML slab, n is the characteristic 

impedance of the reference material, and <r is the conductivity of the PML. Within the context of 

an FDTD simulation R(9) is referred to as the "reflection error" since it is a non-physical reflection 

due to the PEC backed PML slab. This reflection error decays exponentially with the thickness of 

the PML as well as with the conductivity of the PML. However, the cosine dependence of 6 

dictates that at higher angles of incidence, the reflection error will increase for a fixed a and d. To 

be effective within an FDTD simulation, it is desirable for the PML medium to be as thin as 

possible. Thus, for a small d, one must have a large conductivity to reduce R(6) to an acceptably 

small level. 
The PML interface presents a discontinuity in both the electrical and magnetic conductivity. In 

the discrete space representation of Maxwell's curl equations via the FDTD method, it is realized 

that these discontinuities are modeled using a linear approximation [31]. Furthermore, a and a* 

are staggered by one half of a lattice cell due to a staggering of the electric and magnetic fields. 
Subsequently, large discontinuities in <rand a* will lead to significant discretization error which 

will manifest as a spurious reflection. To reduce this reflection error, it was proposed by Berenger 

to spatially scale the conductivity profile along the normal axis [26]. It can be shown that as long 

as the conductivity is scaled along the normal axes, then the material is still perfectly matched. 

In the continuous space, assume that ex is a function of x. Assuming a PEC backed PML slab of 

thickness d, the reflection due to a purely propagating wave impinging at angle 9 is: 

m = e-
2«£r™6\to(x)d\ (34) 

A few profiles have been suggested for scaling a. The most successful have been a polynomial 

scaling and a geometric scaling [32]. The polynomial scaling is simply: 

x <X*)-(fJ «w <35> 
This scales the conductivity from 0 at the PML - working volume (WV) interface to omax at the 

PEC boundary. The resultant reflection coefficient is: 

.      - 
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fl(0) = e-2>7£,-<Wrfcos0/(/M+l)_ (36) 

Polynomial scaling provides two parametric coefficients for a fixed PML thickness: amax and m. 

The larger m, the flatter the conductivity will be near the PML - WV interface. Deeper into the 

PML, the conductivity increases more rapidly. In this region, the field amplitudes have decayed 

substantially and the reflections due to discretization error contribute less. Typically m in the range 

between 3 and 4 has been found to be suitable [14, 32-34]. 

If the real part of s is > 1, then it can also be spatially scaled using the polynomial scaling. 

Thus, K: will scale from 1 to some maximum value Kmax at the PEC boundary. To this end: 

K(x) = l + (fcmax-l) 
x 

\d) 
(37) 

where /cmax^ L 
For polynomial scaling, the parameters can be determined for a given error estimate.   For 

example, given m and d, it is desired to achieve a reflection error of R(0), then from (7.60) cxmax 

is computed as: 
\n(R(0))(m + l) (38) 

ffmax 2rjerd       ' 

Geometric scaling scales the conductivity profile geometrically. Let Ax be the spatial increment 

of the FDTD lattice. Then [33], 

<y(x) = [g^Jcr0. (39) 

Specifically, the conductivity scales from a0 at the PML - WV interface to gNa0 at the PEC 

boundary, where d = NAx is the thickness of the PML slab. From (7.58), this results in a 

reflection coefficient of: 
^(öy=e-2f7aoA.x(gA'-l)cos0/lng_ (40) 

For geometric scaling, there are two parameters to choose for a fixed d: g and <J0. a0 is the 

conductivity in the x = 0 plane, or the PML/WV interface. Thus, it must be small to minimize the 

initial discretization error. The metric g governs the rate of increase of the conductivity deeper into 

the medium. Of course, g is always greater than 1. The larger g, the flatter the conductivity profile 

near the interface, and the steeper it increases deeper into the PML slab. 

Again, if K is > 1, then it can also be geometrically scaled as: 

K(x) = iqAx) .        " (41) 

Thus, K will scale from 1 to some maximum value qNat the PEC boundary. 

For geometric scaling, one would predetermine g, d, and R(0). Then, 
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ln(*(0))ln(g) (42) 

°°       2r\erbx(gN-X) 

where d - NAx is the thickness of the PEC backed PML layer. 

The design of the optimal PML results in a delicate balance of the theoretical reflection error 
R(6) and discretization error. For example, (38) provides C7max for a spatially scaled conductivity 

given a predetermined R(6) and m. In practice, if ermax is small, the predominant reflection of the 

finite PML will be due to PEC backed wall. In fact, (36) provides a fairly accurate approximation 
of the reflection error if cxmax is sufficiently small. However, in practice one would rather choose 

<rmax to be as large as possible to minimize R(9). Unfortunately, if crmax is too large, then 

discretization error due to the FDTD approximation will dominate and the actual reflection error 

will be orders of magnitude higher than what (36) predicts. Subsequently, there is an optimal 

choice for R(6) which balances reflection from the PEC wall and discretization error. 

It was postulated by Berenger in [32, 33] that the largest discretization error manifesting as 

reflection error occurs at the PML interface. Energy that penetrates into the PML that is 

subsequently reflected will be attenuated before exiting the PML and typically is not as large a 

contribution. Thus, it is desirable to minimize the step discontinuity at the PML interface. One 

way to achieve this is by spatially scaling the conductivity in the PML as presented earlier in this 

section. In fact, for larger m or larger g, the flatter the conductivity profile near x = 0, thus 

reducing crv(0). However, if m or g become too large, then reflections from deeper within the 

PML will begin to dominate. 
For geometric scaling, the optimal g is typically between 2 and 3. For polynomial scaling, the 

optimal m is typically between 3 and 4. Through extensive experimental study, it was 

demonstrated in [14,35] that for a broad range of applications an optimal choice for a 10 cell thick 

PML is safely assumed to be R(0) * e~16. For a 5 cell thick PML, R(0) ~ e'% is optimal. From 

(38), this leads to an optimal choice for crmax: 

a    -     fr+j)    , (43) 
opt    150 K-^AX 

where Ax is the grid spacing along the axial direction. For many cases, aopt will be close to 

minimizing the reflection error, and this value has proven to be quite robust and applicable for 

many applications, as will be further illustrated below. 

5. Validation 

To demonstrate the effectiveness of the PML, consider a current source radiating in an 

unbounded medium, as illustrated in Fig. 6. The source is a vertically directed current source that 

is invariant along the axial z-direction. Hence, it will radiate two-dimensional TEZ waves. 
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r ' 
A two-dimensional adaptation of the FDTD algorithm truncated by UPML media was 

implemented. The FDTD lattice used to simulate this problem consisted of a 40 mm X 40mm 

region. The spatial discretization used assumed Ax = Av = 1 mm, and the time step was 0.98 of 

the Courant limit (At = 0.92457 ps). Hence a 40 x 40 cell lattice was employed in the working 

volume region. The vertical current source was placed in the center of the computational domain 

and had a differentiated Gaussian pulse time signature: 

t-L m y,(w..')—2^«'*" (44) 

where the pulse half width tw = 2.65258 X 10"'' s, and the pulse delay t0 = 4 tw. Note that the 

amplitude is scaled by tw. The electric field was probed at two points, A and B, as illustrated in 

Fig. 6. A is in the same plane as the source and two cells from the PML interface, and B is two 

cells from the bottom and side PML walls. The electromagnetic fields were simulated over 1000 

time steps, which is well past the steady state response. 
Both a 5 and 10 cell uniaxial PML absorbing medium was used to terminate each exterior 

boundary. The PML parameters were scaled using a polynomial scaling, where m = 4, amax = 

obpt, and fCmax =1. The relative error computed at points A and B due to 5 and 10 cell thick PML 

layers as a function of time is illustrated in Fig. 7. To compute the relative error at points A and 5, 

a reference simulation was performed a priori using a 1240 X 1240 cell lattice with the current 

source located at the center of the lattice and the fields at points A and B at the same relative 

positions. The grid was made sufficiently large such that no reflections from any boundaries 

would be present in the reference solution. It is noted that the error is related to the maximum field 

value at that point during the time simulation. 

Observing Fig. 7, it is seen that the maximum error occurs in late time. This error is 

predominately low frequency error as anticipated. As time advances further, this error gradually 

decreases. It is also observed that the error at point A is always less than that at point B. This is 

mainly because the wave impinging on the wall near point A is predominately normally incident. 

Thus, maximum absorption is seen. At point 5, the amplitude of the wave is smaller, due to the 

radiation pattern of the source, and the wave impinges on the boundaries at 45 . 
The relative error in Fig. 7 was computed assuming a fixed crmax (= Copt)- Additional 

information can be gained by observing the maximum error over 1,000 time iterations recorded at 

points A and B as a function of o-max- This is illustrated in Fig. 8, where crmax is varied from 0 to 

3 times <r0pt for the 5 and 10 cell thick PML layers. It is noted that the same <7max was used for 

each of the four boundaries, and m = 4 was again assumed. Interestingly, at points A and B, the 

optimal choice for crmax is quite close to obpt- Again, though, the maximum error in the fields at 

point B is roughly an order of magnitude larger than the error at point A for 5 and 10 cells thick 
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PMLs. Fig. 9 illustrates the error for a 15 cell PML, and it is shown that for crmax = obpt,that the 

errors at both points A and B are the same, and more than 5 digits of accuracy are realized. 

A more comprehensive study of the reflection error is offered by Fig. 10. Specifically, 

Figs. 10.a and lO.b are contour plots of the maximum relative error at points A and B, 

respectively, recorded over 1000 time iterations versus the conductivity amax normalized by aopt 

as well as the polynomial order m. It is noted that m is not necessarily an integer, and was scaled 

from 1 to 5. It is observed that the minimum error is found for when m is between 3 and 4, and 

when amax is roughly 75 % of aopt. Even if aopt. is chosen, the reflection error on the order of 

-90 dB at point A and -75 dB at point B. 
A similar study is performed when geometric scaling is used to scale the PML parameters. 

Figure 11 is a contour plot of the maximum relative error over 1000 time steps at points A and B 

versus R(0) and g for a 10 cell thick PML. Interestingly, for g = 2.2, roughly -85 dB of reflection 

error is realized at both points A and B when ln(/?(0)) is between -12 and -16. It is also observed 

that the effectiveness of the PML is quite sensitive to the choice of g. 

As a final example, consider a printed antenna analyzed using the FDTD and the uniaxial PML 

boundary condition. The geometry of the patch antenna that was simulated is superimposed in the 

graph in Fig. 12. This antennas was previously analyzed in [36, 37] The discretization used for 

this problem was Ax = 0.389 mm, Ay = 0.4 mm, Az = 0.1588 mm, and At = 0.441 ps. The 

source microstrip line was 50 cells long and was excited by a voltage source with a Gaussian 

profile and a 30 GHz bandwidth. The interfaces of the PML media were placed 3 cells from the 

edge of the patch antenna, and 5 cells above the surface of the antenna. The PML slabs were 10 

cells thick. A spatial scaling with m = 4, and <r0pt from (7.67) were used. Fig. 7.25 compares the 

reflection loss |5//| computed using the FDTD and the PML boundary that was positioned as 

described above, with the case when the PML boundaries were placed much further away. 

Negligible difference is observed in the result over most of the frequency band. However, as 

expected, there is some small error at very low frequency. 
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PML Region 

Fig. 6 TE-polarized wave excited by a vertically directed electric current source in a two- 
dimensional region. The working volume is 40 mm X 40mm, and is surrounded by 
PML layers of thickness d. The source is located at the center of the region. The fields 
are probed at two observation points A and B. 
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((7.67)). Polynomial spatial scaling with m = 4 and K= 1. 

0.1 

UJ 
CD > 

CD 
DC 

0.001 

0.0001 

10'5 

10"6 

Fig. 9 

!\ 

..,.,,.     , .       ,         -_ 

:    ^ 

o     15 cells (A)              - 
■ — *- 15 cells (B)              : 

=   V 
1 

\ 
r         | 
-          ^1 ,xr   "~~                                    Z 

_,.i.. —-"*"                                                                 ,_.  <; 

"                 1    / 
-               'v ! 

,   I    1    1   1    f   1    1    1 

'- 

0.5 1.5 
a    la   t max    opt 

2.5 

Maximum relative error due to a 15 thick PML termination of a 40 X 40 cell lattice 
excited by a small dipole over 1,000 time iterations versus <7max/Copt ((7.67)). 
Polynomial spatial scaling with m = 4 and K = 1. 

23 



S. Gedney, Rigorous Analysis of Large Scale MMIC Circuit Devices 4/98 

E 3 : £  3 - 

Fig. 10 Contour plot of the maximum relative error at points A and 5, respectively, due to a 
polynomial scaled 10 cell thick PML termination of a 40 X 40 cell lattice excited by a 
small dipole over 1,000 time iterations versus oma\loopt and in. 
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Fig. 11 Maximum relative error at points A and B, respectively, due to a geometrically scaled 

10 cell thick PML termination of a 40 X 40 cell lattice excited by a small dipole over 
1,000 time iterations versus g and ln(/?(0)). 
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Fig. 12 \S\\\ of a microstrip fed patch antenna (superimposed) printed on a 31.25 mil Duroid 
substrate(er = 2.2) computed via the FDTD method. The FDTD lattice is terminated 
by a 10-cell thick uniaxial PML layer which is placed: —*~ 3 cells from the edge of 
the patch and 5 cells above the patch, and —B~ 10 cells from the edges of the patch. 
Source: Gedney, IEEE Transactions on Antennas and Propagation, vol. 44, pp. 1630- 
1639, December 1996. 
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V    Parallel Finite-Element Frequency-Domain Method 

1. Introduction 
The finite element method (FEM) is an effective means for analyzing a plethora of 

electromagnetic problems. The FEM's principal attribute is that it efficiently models highly 

irregular geometries as well as penetrable and inhomogeneous material media. Secondly, the linear 

system of equations that results from a FEM discretization is highly sparse and can be solved using 

efficient solution techniques for sparse matrices. The focus of this section is on the development 

of an efficient parallel algorithm for the solution of the sparse matrix arising from an FEM 

formulation, y An early approach to this problem was a divide-and-conquer technique developed by 

Patterson et al. [38, 39]. This approach consisted of partitioning the global matrix using an 

automatic partitioning scheme. Subsequently, a global iterative solver based on the Bi Conjugate 

Gradiant (BiCG) method was used to solve the distributed sparse matrix. 

Alternatively, a parallel direct solution method for two-dimensional FEM analysis was 

introduced by Lee and Chupongstimun [40]. This technique coupled the subdomain solutions by 

enforcing tangential field continuity between adjacent subdomains leading to a global matrix 

representing only the tangential fields on the shared boundaries. The global matrix is much smaller 

than the original FEM matrix and can be solved using a direct method. 

In [41 ], Depres introduced a hybrid iterative DMM for the two-dimensional Helmholtz problem. 

To this end, an iterative method was proposed, for which each iteration consists of solving the 

fields interior to each subdomain and then constraining the field continuity at the interface of each 

subdomain by enforcing a Robin-type transmission condition on the boundary fields (this 

transmission condition essentially enforces the continuity of both the tangential electric and 

magnetic field intensities across the shared boundaries). Depres also introduced a relaxation 

scheme in [42] which greatly accelerated the iterative process. Later Stupfel [43] extended this 

method by prescribing a new ABC [44] at the exterior boundary and using an "onion like" partition 

of the computational domain improving the efficiency of the transmission condition and overall 

performance of this DDM. 
The focus of this research is on the application of a hybrid iterative solution based on the method 

of Lagrange multipliers. This method is modeled after Finite Element and Tearing Interconnecting 

(FETI) method originally developed by Farhat and Roux [45]. Specifically, the FEM discretization 

of the weak form equation for each subdomain will be posed. The solutions of each subdomain 

will be constrained through the use of Lagrange multipliers by enforcing the continuity of the 

tangential fields across each boundary interface. A reduced system of equations representing the 

Lagrange multipliers is then derived and is solved using a Conjugate Gradiant (CG) algorithm. 

The advantage of this method is that each subregion can be solved completely independently, 
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lending to a scalable algorithm. Secondly, the number of iterations required to solve the global 

problem is dependent on the order of the matrix representing the Lagrange multipliers as opposed 

to the global matrix. 

2. Formulation 
Assume that a lossy inhomogeneous half space is interfaced with a uniaxial anisotropic medium 

in the z = 0 plane. In the anisotropic medium, Maxwell's equations are described in the frequency 

domain as 

VxE = -jcofu0nrsH^   VxH = jcos0£rsE (45) 

where sr is complex and frequency dependent, and s is the tensor in equation (19). 

The vector wave equation in the uniaxial medium is then derived from (45): 

Vx/urs  Vx|-fi):ju0v".j£=0^ (46) 

where UPML is assumed throughout the volume. Performing the inner product with a testing 

function defined over the finite volume Q, and utilizing Green's first identity results in the weak 

form equation: 

[{[\vxf-ß7\xE-co2pi0s0slj"E]jQ-§\f-nxiuJ]VxEdA = 0 
y    JJnJL -I        &L J (47) 

The finite element solution is performed by discretizing the volume into element domains, and 

expanding the testing and trial vector functions using vector edge elements (in this paper first-order 

Whitney elements are employed). Then, the first variation of (47) is evaluated at the stationary 

point, leading to a sparse linear system of equations. 

Inside the working volume, the medium is assumed to be isotropic. Specifically from (19) and 

(20), " reduces to the identity tensor.   Within the PML region, s is anisotropic, and the 

parameters are assumed to be spatially dependent as a m-th order polynomial along the normal 

axes. To more accurately represent the spatial variation, numerical integration was used to perform 

the integrals in (47) using numerical quadrature.   Furthermore, since the PML interfaces are 

assumed planar, the implementation of (47) is quite simple in the FEM routine and no special 

preprocessing is required. The exterior of the PML region is assumed to be a PEC wall. On this 

wall, a Dirichlet boundary condition is enforced. 

3. Finite Element Tearing and Interconnecting Method 

The Finite Element Tearing and Interconnecting Method (FETI) is a domain decomposition 

technique based on a hybrid variational principle. For simplicity consider a domain Q divided 
into non-overlapping subdomains Q/. Adjacent subdomains will share common boundaries 

defined by r,y.   The vector electric fields and testing functions within each subdomain are 
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discretized separately into finite elements. Then evaluating the first variation of (47) at a stationary 

point yields: 

Kie,=ft (48) 

where <?/ is the vector field unknowns in region Q,. (/ = 1,2), Kj is the stiffness matrix, and^- is the 

forcing vector in Q,. 

The discrete fields in each subregion are constrained to enforce the continuity of the tangential 

electric fields across the shared boundary. Specifically, let B enforce the continuity of the discrete 

tangential fields across the shared boundaries Ty. Subsequently, using the method of Lagrange 

multipliers, it is desired to solve the linear system of equations 

Ke = f (49) 

under the constraint 
Be = 0 (5°) 

where K is a block diagonal matrix defined by 

~K{     0     •••     0 

K 
0 

0 

K, ...     o 

0'   K N (51) 

e and/are described as 

e = 

>~ _/il 
e? .    / = h 
eN_ UN\ (52) 

and B is also a block matrix representing h x(et - ej) = 0. It is noted that B is highly sparse, and 

all non-zero entries are simply ±1. From the theory of Lagrange multipliers, the solution of this 

constrained linear system is equivalent to finding the stationary point of 

f = -eTKe-eTf + XTBe (53) 

where A is the vector of Lagrange multipliers. Taking the first variation of (53) and evaluating it at 

the stationary point leads to the symmetric linear system of equations 

K   Bl 

B     0 
e 
A 

/ 
0 (54) 

From the first row of (54), it follows that 

e = K-\f-BTk) v (55) 

combining this with the second row of (54) leads to the symmetric sparse linear system of 

equations 

BK-lBTX=BK~lf (56) 

28 



S. Gedney, Rigorous Analysis of Large Scale MMIC Circuit Devices   4/98 

The parallel algorithm then proceeds as follows: i) K is factorized using a sparse matrix 

factorization method. Note that this is done completely in parallel due to the block diagonal 

characteristics of K defined in (51). As a result, each Kj is factorized independently and 

concurrently on each processor, ii) A complex CG algorithm is used to compute the solution for 

the Lagrangian vector A from the reduced order matrix equation in (56). It is noted that the matrix 

vector multiplies are performed completely in parallel since the products of vectors with the matrix 

blocks Kf1 and 5/ can be performed explicitly in parallel. Hi) Once the Lagrange multipliers are 

computed, the electric fields are computed in parallel from (55). It is noted that the matrix in (56) 

is well conditioned, and the ordör of the matrix is greatly reduced as compared to the order of the 

global matrix. As a result, the iterative scheme is expected to converge rapidly. It is also noted 

that if there is symmetry or repetitiveness in the geometry resulting in blocks with identical Kj, then 

such blocks only need to be stored and factored once on one processor. (It is noted that proper 

load balance should still monitored such instances). 

4.  Results 
Initially, the effectiveness of the UPML absorbing media will be presented for the frequency- 

dependent analysis. Then, the efficiency of the FETI solution will be studied for FEM models 

with UPML. To study the effectiveness of the FETI for solving PML meshes, an air filled 

rectangular waveguide was initially studied. This problem was chosen since the exact solution is 

known. Secondly, it isolates the performance of a single wall in the discrete space. The 
waveguide is assumed to have a cross section of a = 0.4 m by b =0.4m. The TE0X mode is 

excited at one end of the waveguide, and the other end is terminated into a UPML layer. The 
waveguide was excited at 400 MHz which is above the TE0i mode cutoff frequency of 375 MHz. 

Initially, the waveguide length was set to 1.1m and the depth of the PML was 0.4 m which is 

effectively 8 cell radii thick. First-order tetrahedral edge elements or Whitney elements were used 

in this study, and there was no effort to make the tetrahedral elements symmetric about any axis. 

We looked at the effect of varying the order of the spatial polynomial from m = 0 to m = 3. In 
addition K, was set to 1 for the propagating mode, and effectively <rmax was varied by 

correspondingly varying the theoretical reflection coefficient Rlh, which is defined as [26]: 

_2^mLßid'/(m+\) 
Rth=e    '°£°   ' , (57) 

where m is the order of the spatial polynomial and d is the thickness of the PML layer in meters. 

Subsequently, crmax is given by: 

(m + l) 
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The reflection coefficient computed numerically is illustrated in Fig. 13. Superimposed in this 

graph is the theoretical prediction of Rth- The theoretically predicted reflection coefficient is 

followed up to an optimal value. The case when m = 3 performed optimally, and provides -60 dB 

to -70 dB of absorption near its optimal value near \n(Rth) = -6.6. Choosing Rth above this value 

leads to a degradation in the performance of the PML. 

The parallel FETI solution method was implemented on a 32 processor Intel iPSC/860 

hypercube. For scalability analysis, the physical length of the waveguide was varied from 0.8 m 

to 12.8 m doubling the length at each step and simultaneously doubling the number of processors. 

(Note that the PML depth was kept constant (d = 0A m)). At each step the number of processors 

used was also doubled keeping the number of elements per processor constant. This provided for 

a.scaled speedup analysis. Scaled speedup provides a measure of the scalability of the algorithm 

by scaling the problem size with the number of processors. Scaled speedup can be determined by 

summing the efficiencies of each processor. This method essentially determines the amount of time 

it would take a single processor to solve the same problem as the multi-processor system. Finally, 

the order of the spatial variation was set to «i = 0 and the conductivity was set by 

choosing Rlh=\.367e-05. 

Table 3 summarizes the results from varying the number of processors from two to thirty-two 

with each processor responsible for 3072 elements. The discretization used for this problem was a 

simple one-way dissection. As a result, for each case there are (P-l) common boundaries with 176 

common edges per boundary where P is the number of processors used. The waveguide problem 

solution was found by solving the local problem using a direct solver while solving the global 

problem using an iterative solver (PCGM). The local problem could have also been found using a 

iterative solver but for this study a direct solver was chosen. 

To compare with the FETI method, Table 4 shows the results from solving the same problem 

using a single node on a SGI Power Challenge using a PCG method with diagonal 

preconditioning. It is interesting to note that the number of iterations has dramatically increased. 

This is due to the fact that the FEM matrix becomes highly ill-conditioned with PML present. 

Interestingly, the reduced matrix resulting from the FETI solution is very well conditioned, as 

illustrated in Table 3. 
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Fig. 13.    Fitted reflection error for a 0.4m x 0.4m x 1.1m waveguide with a 0.4m PML for different values of 

the polynomial variation, m, and crmax within the PML. 

Table 3. Comparison of results for the FETI algorithm with 3072 cells per 
Processor 

Processors 2 4 8 16 32 
Total number of Unknowns 6240 12656 25488 51152 102480 
# of Lagrangian Multipliers 176 528 1232 2640 5456 
Iterations 57 133 187 261 385 
Scaled Speedup 1.27 2.21 4.99 11 24.2 
Execution Time (sec) 227 378 456 567 752 

Table 4. Results for waveguide problem on a Single Processor using Diagonal 
Preconditioning. 

Total number of Unknowns 6240 12656 25488 51152 102480 
Iterations 4212 6974 12028 22063 61642 
Execution Time (sec) 107 394 1604 6733 45719 
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VI  A  Parallel  Unconditionally  Stable  Finite-Element  Time-Domain 
Algorithm 

The previous section presented a parallel finite-element frequency-domain algorithm. The focus 

of this section is the development of a parallel finite-element time-domain algorithm. Finite element 

time-domain based solutions of Maxwell's equations have been developed using both implicit [46], 

and explicit methods [47]. For an implicit method to be competitive with an explicit method, the 

number of time iterations required to converge to a final solution must be significantly less, since 

each time iteration requires a solution of a linear system of equations. Unfortunately, the implicit 

finite element time-domain (FETD) methods presented in [46] are conditionally stable, and in fact, 

stability can lead to time steps that are smaller than that required by explicit FDTD methods [9]. 

Therefore, it becomes necessary to develop a technique that is unconditional stable. The time- 

dependent vector wave equation for a lossy, inhomogeneous space is written as 

1 „    - 8E    £,. ö2E 3J /cq^ 
Vx— Vx£ + Ai0(7— + -L—T = -ti0— (59) 

»r dt    ci dt1       'at ^o 

A variational expression is then derived from this equation. Then, expanding the field using vector 

finite elements leads to a linear system of equations with time dependent coefficients e 

[r.]-V7T+[r.]*£+ra. = -/ (60) 
ci dt cn dt 

A difference equation is derived using the Newmark Beta formulation, leading to the implicit 

formulation for the electric field 

e [re]+HcoA/[rff]+j3(coA02[S] j
1{[2[rj-(l-2^)(c0A/)2[5]]e" 

where ß is the Newmark Beta coefficient. Performing a stability analysis, it is found that if 

ß > 0.25, this implicit formulation is unconditionally stable [6]. It is further found that the 

optimal choice for ß is 0.25, as this leads to minimal error. This is intuitive since if ß = 0.25, 

this formulation is equivalent to that derived using a trapezoidal time-integration scheme. The 

principal advantage of unconditional stability is that the time step is no longer governed by the 

mesh quality and the resulting eigenspectrum of the linear system, but rather by the spectral content 

of the signal propagating through the mesh. For printed circuit applications, this has a great 

implication as cell sizes can easily be on the order of 0.001 Aw/„ or smaller. 

A parallel algorithm was implemented to perform the implicit time-dependent solution based on 

the FETI algorithm described in the previous section. As expected, this has provided excellent 

speedups. As a demonstration of the effectiveness of the algorithm, we consider the problem of 

computing the resonant frequencies of a cavity loaded with a PEC wedge, as illustrated in Fig. 14. 

The cavity has the dimensions 1.0 m by 1.0 m by 1.5 m. The wedge has a base area of 0.2 m 
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Fig. 14 A PEC Wedge in a cavity Fig. 15 Tetrahedral mesh of the surface of the wedge and 
cavity 
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Fig. 16 Variation of resonant frequency v/s the time step. 
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by 0.2 m and a height of 0.75 m. This problem was modeled using SDRC/I-DEAS using 

tetrahedral elements. The maximum element size is 0.1 m and the minimum size is 0.005 m. 

Near the apex of the wedge, the element sizes are very small so that the fine geometries in this 

region can be accurately measured. The surface mesh on part of the geometry is shown in Fig. 15. 

Figures 16.(a)-(c) illustrate the variation in the resonant frequencies as the time step is increased. 

We notice that the error in the resonant frequency is less than 1.0 % for all values of the time step, 

except for the last data point. A central difference algorithm has a limit on the time step of 

0.0075 ns because of stability considerations. 

Figure 17 illustrates the variation of the total execution time for the time simulation as the time 

step is increased. It is noted that the execution time decreases as the time step is increased. This 

decrease in the execution time is very sharp for the smaller time steps, but as the time step is made 

larger, this benefit reduces. Figure 17 also illustrates the variation in the number of iterations per 

time step for the Conjugate Gradient algorithm versus the time step. We see that as the time step is 
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Fig. 17     Variation of Execution time and Average number of CG iterations per time 
step with the time step. 

increased, the CG algorithm requires approximately the same number of iterations for convergence 

for small time steps, but this number grows almost in direct proportion to the time step. Thus, an 

appropriate choice for selecting the simulation time step can be made by considering both Figs. 16 

and 17 to give reasonable accuracy and fast execution. For this problem, an appropriate choice for 

the time step would be approximately 0.1 ns. Note that this time step is more than an order of 

magnitude larger than the central difference algorithm stability limit and can reduce execution time 

for the complete simulation by that factor. 
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VII   Orthogonal and Nonorthogonal FDTD Analysis of Periodic 
Structures 

1. Introduction 
Frequently, it is of interest to analyze the electromagnetic scattering by bodies with geometries 

with periodicity in one or more dimension. Some examples of applications of periodic structures 

are frequency selective surfaces, active grid arrays, or photonic band gap structures. Taking 

advantage of this periodicity can lead to greater efficiency and accuracy when solving the problem 

numerically. 
Typically each periodic feature is referred to as a cell and the periodicity of these cells is 

accounted for using Floquet theory. For a normally incident plane wave, accounting for this 

periodicity in either an orthogonal or non-orthogonal FDTD method is quite straightforward as 

there is no phase shift between each periodic cell [48]. However, when a plane wave source is 

obliquely incident there is a cell-to-cell phase variation between corresponding points in different 

unit cells which causes the time-domain implementation to become more difficult. 

For oblique incidence plane waves, a Floquet field mapping may be applied which results in a 

set of mapped fields which possess the same cell-to-cell field relations as exist for the normally 

incident, unmapped fields [49]. The resulting equations may add considerable complexity to the 

FDTD solution [50] and lead to a more stringent stability relation for higher angles of incidence. 

At present, the periodic methods which are available have only been applied using the orthogonal 

FDTD method. 
In this work, the Floquet-mapped periodic FDTD equations are solved using an alternative 

approach referred to as the split-field update method. This technique is shown to be simple to 

implement and a stability analysis shows the technique to have a less strict stability criterion than 

previous implementations. Subsequently, the split-field update method is applied in a general 

curvilinear space using the non-orthogonal FDTD technique. The use of Floquet-mapped FDTD in 

non-orthogonal grids may lead to further computational savings due to fewer and larger cells. The 

split-field update technique is validated by comparison of the numerical results with measured data. 

2. Formulation  - ' 
The field components of a TMZ plane wave incident on a two dimensional material which is 

periodic in the x direction will have a phase shift of the form eJto where kx = ™£, v0 is the 

speed of light in free space, and 0 is the angle of propagation for the incident field. A set of 

auxiliary variables is introduced which implicitly accounts for this phase shift as [49] 

p=i£^Lt   Qx=Hxe-^\   Qv = HYe-^x. (62) 
n0 ' "     " 
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Substituting these expressions into Maxwell's curl equations maps the solution space such that 

there is no phase shift between the computed fields at like positions in each periodic cell. Now 

boundary conditions at the periodic boundaries consist of constraining the tangential fields on 

opposing boundary walls to be equivalent. The application of this mapping in orthogonal is first 

presented and then for non-orthogonal grids. 

l 

5. Orthogonal Grid FDTD 
Substituting (62) into Maxwell's curl equations leads to: 

ja^A-?Sk+ja™lQv, (63) 
v0        dx       dy v0     ■ 

/fflMi = _^ (64) J(° dy' vo 

j^^+jcoOnlp. (65) 
v0        dx v0 

Notice that the substitution of (62) has produced extra terms (denoted by brackets) on the right 

hand side of (63) and (65). When (63) and (65) are discretized, the presence of these extra terms 

leads to difficulty. One difficulty arises due to the appearance of the time derivative (jo) => ^) on 

both sides of these equations. Another difficulty arises because the right hand sides are no longer 

spatially aligned. These difficulties may be overcome by introducing dual grids in time and multiple 

grids in space [50]. 
In this work an alternate approach is taken which is numerically stable, efficient, and applicable 

in either orthogonal or non-orthogonal grids. The technique used here will be referred to as the 

split-field update method. Equation (63) is now 'split* into two parts by defining P. = P" + P-_ 

where 

JC0^PL = ?9L-^, ■ (66) 
v0        dx       dy ' 

pb = sine_Qv (67) 

Equation (43) is split similarly by defining Qy = Q"+Qy where 

Vr°l = ^ (68) ja- 
v„        dx ro 

sin 9 gh = sirwp (69) 

y        Vr 

Substituting the split forms of Pzm& Qy along with (69) into (67) and solving for Pz then gives 
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P.= 
P" 

1- sin1 6 
■ + ■ 

sin 8 
sin2 e Q? (70) 

Equations (64), (66), and (68) and (70) are discretized using a spatially interleaved Yee lattice. 

Furthermore, a dual time grid is introduced such that each field component of both P and Q is 

computed at each half time step. Note that the time derivatives are applied using central differencing 

in time as usual, but now these updates are computed at each half time step. Spatial alignment 

required in (70) is accomplished by field averaging which provides second order accurate results 

without resorting to multiple spatial grids. The resultant update equations are 

Pa. 
-•■j 

■Pa...   +d j 
.«-O 

±\ 
Q» =Q^+b{j\p:"-p:.2 

^■y'i.j     ^>i.j >-\   -i+i.y        -i.j 

pa"  +sine_l0a"   + QO" 

P: = 
~ij i _ sin" 9 

BrPr 

b = sin9_lpn       +pn\ 

(71) 

(72) 

(73) 

(74) 

(75) 

where 

df.j = 
At v        At        x _   At 

•   d'u = ~T>  biJ ~ e,.Ax J        Urty srAy'     ,,J    pirAx 

Implementation of (71) through (75) has proven that this technique is stable for all angles under 90 

degrees. 
An exact stability relationship was derived for these update equations [51]: 

1 Axcos2d 
At< 

vo \sin 0\sin £,cosi; + ^sin2 6sin2 % cos2 % + (sin2 £ + a)cos2 9 
(76) 

where 

B, = cos' 
1   [ 1 + sin2 9(Aa + 2)- ^sin2 d(a - sin2 9) + 1 

sin2 9(2 + 3a) + a 
(77) 

and a = (Ax/Ay)2. It is noted that this stability criterion is must less stringent than that of the 

algorithm in [49] at higher angles of incidence. In fact, near grazing the time step can be increased 

by as much as a factor of 3. 
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4. Non-Orthogonal Grid FDTD 

Next, the split-field update method is applied to a two-dimensional non-orthogonal grid. To this 

end, it is assumed that the grid is structured, but irregular and non-orthogonal. Each cell is locally 

defined by a curvilinear coordinate axis, defined as (w/, «?, "i)- The axis is defined on a local 
basis by the unitary vectors ax, ä2, ä3, where a3 is orthogonal to the w/, «2 plane. In the general 

curvilinear space, the covariant field values are tangential to the unitary vectors and are designated 

by subscripts. The contravariant field vectors are normal to the cell faces whose edges are defined 

by the unitary vectors and are designated by superscripts. In the orthogonal space, a mapping of 

the form in (40) was assumed. This mapping is projected into the general curvilinear space as: 

P „-j(ßl"\+ß2"2> 
p  _£3£ t 

3 rj0 ( 

Q =He-J(ßi"i+ß2"2>t (78) 

Q2 = H2e-J(ß^+ß'lh-), 
where, ßx = kx ■ aLx,    ß2 = kx ■ a2x, and a!x and a2x represent the x-directed component of the 

normalized unitary vectors ax and a2, respectively. An equivalent expression to (78) is also used 

for the contravariant field components. 
The mapped fields in (78) are then inserted into the differential form of Maxwell's equations in 

general curvilinear coordinates [52]. For the TMZ case, this leads to: 

J<*> 
erP\   1 (8Q2    dQC sin 6      „      .    sind .    sin a       _      .    zinv       „ /7Qx 

+ jco—rauQ2-jco—ra2xQx, W 
v0iS   " voiS 

.   urQ          1   dP3     .    sin 9 <QQ\ 
jco^^ = -^—±-j(o ra2xP3, K*v) 

urQ
2       1   dP-i     .    sind      D (oX\ 

v0        iS du\ Vo<S 
Note that the substitution of (78) has resulted in extra terms (denoted by brackets) on the right- 

hand-side of (79)-(81). Once again, these terms are handled efficiently via a field splitting. 

Specifically, let P* = p3°+pM Q1 = Qla + Qlb, and Q2 = Q2a + Q2b, where 

j(0 
s,.P2a _   1  (dQ2     ÖQy 

vo       iS dux     du2 
ni,h     sin 9      „      sin 9       _ rQ^ 
P3h = —r auQ2- —r a2xQi, (82) 

e,-i§ £r^S 

toÄÖÜa-i^   Qlh=~^o2xP3, (83) jo 
v0 -igdui Mr^S 

jaE^l      1  a.   ff.*«^» (84) 
V0 iS <&1 VriS 
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Finally, each covariant component is projected from the contravariant field components through the 

mapping 

i-iv' (85) 
7=1 

where gy = at ■ äj and -Jg~ = ä3 •■(d1 x ä2). 

To solve the split field equations in (82) and (83), through the manipulation of terms, it can be 

shown that 

3a     sinO      „       sin 9 
P3a+^alxQ2a--^a2xQla 

P3 =      
£/-yg g/-yg (86) 

1 - sin 6 

where 

M _a^Swsind    a\xSi\sinS    A/7 _ a2-yg'2si,l6    ä^g22sin° (87) 

and hence eliminating P3h, Qlb, and Q2b. 
Finally, (82) through (87) can be implemented in a discrete space in a similar manner as that 

presented for the orthogonal grid algorithm. Specifically, both P and Q are updated at every half 

time step. Then, P3a, Qla, and Q2a are updated using (82) - (87). It is noted that P3 = P3 due to 

the assumption of a two-dimensional geometry. 

5. UPML Boundary Condition 
In both the orthogonal and the non-orthogonal grid codes, the uniaxial PML method was 

successfully employed to terminate the non-periodic boundaries. This was based on a simple 

extension of the work in [14, 51]. 

6. Validation 
To validate both the non-orthogonal and orthogonal formulations, the algorithms were applied to 

the analysis of a photonic bandgap (PBG) structure. The results were then compared to rjieasured 

results provided by Georgia Tech Research Institute, in Atlanta, GA. The geometry under study is 

illustrated in Figure 18. Each unit cell consists of four infinitely long dielectric rods with a radius 
of a = 2 mm and a dielectric constant of sr = 4.2. The rods are arranged in a square lattice such that 

the center-to-center separation distance is equal to the unit cell width where b = 9.0 mm. 

Simulations were run at angles of incidence of 0 to 50 degrees were experimental data 

(transmission coefficient) was provided. 
This structure was analyzed using both the orthogonal and non-orthogonal implementations 

formulated in this work. The orthogonal FDTD code is based on (49) through (53) with each 
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Fig. 18     Cross-section of a slab of two-dimensional photonic band-gap material. 

dielectric rod discretized at 16 cells (A* = Ay = 0.25 mm) across the diameter of rod. The grid 

dimensions were 39 x 229 including a 10 cell PML region at the two y-directed walls. Test were 

run which showed that the numerical solution had converged at this discretization. In the non- 

orthogonal FDTD based on (60) through (65) only six cells across the diameter of the dielectric 

rods were used and the grid dimensions in were 19 x 105 cells including a 10 cell PML region. For 

each case, the PML parameters were optimally chosen based on [ 14, 51]. 

Figures 19 illustrate the level of agreement between the two numerical methods as well as with the 

measured data for a TMZ incident plane wave incident at 20° off normal. The level of agreement is 

quite good and a clear bandgap of at least 10 dB is indicated. The error is very small for either case 

and probably within the margin of measurable accuracy. The orthogonal implementation of this 

method was stable for all angles of incidence less than 90°. The non-orthogonal method was stable 

for angles of incidence less than 60°. For angles greater than 60° the method did go unstable in the 

very late time. 
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Fig. 19 Transmission coefficient of four rod deep photonic bandgap structure for a TMZ plane 
wave incident at 20 degrees, (a) magnitude, (b) phase. Periodic cell is 9mm wide and 
rod diameter is 4 mm, and er = 4.2. 
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VIII Incorporating the State Variable Technique into the FDTD and 
PGY Methods for Modeling Linear and Nonlinear Devices 

1. Introduction 
The formulations for modeling lumped elements using the FDTD method have been developed 

for several years [53], [54] and the numerical results computed by the FDTD method are in 

excellent agreement with those computed by other CAD tools such as SPICE. Research for 

connecting the SPICE with the FDTD analysis has also been conducted [55]. To further extend the 

applications of the FDTD method, the state-variable technique has recently been incorporated into 

the FDTD algorithm in analyzing the small signal equivalent circuits for microwave active devices 

[56, 57] and the nonlinear large signal model for GaAs MESFET amplifiers [58]. There are two 

basic techniques for modeling microwave active devices. The first technique is to replace the active 

regions of the devices by equivalent current sources with parallel FDTD cell capacitance's. The 

second technique is to replace the active regions of the devices by equivalent voltage sources with 

series FDTD cell inductance's. These two techniques are referred as the current-source approach 

[56] and the voltage source approach [57], respectively. It is important to realize that the current- 

source and the voltage-source approaches are dual. The former is based on Ampere's law and the 

latter is based on Faraday's law. The current-source (CS) approach has an advantage over the 

voltage-source (VS) approach in the sense that the CS approach provides more physical insight to 

the problem. For instance, when modeling the active regions, such as the gate port and the drain 

port, of a microwave active device, those regions are usually divided into several FDTD cells. 

Then the net current sources and the net capacitances at those regions are just the sums of the 

individual current source and capacitance for each cell respectively (since the sources and 

capacitances are in parallel). The VS approach does not yield similar physical insight [51\ On the 

other hand, the VS approach can sometimes simplify the state-variable model for the equivalent 

circuit of a microwave active device by reducing the number of the state variables that are to be 

solved [58]. This is the main advantage for using the VS approach. Due to the straightforward 

implementation and physical understanding of the CS approach, this paper will follow the 

formulation presented in [56]. The CS approach will be briefly reviewed in Section 2. 

There is no doubt that the major task for modeling a nonlinear device is to solve for a set of 

nonlinear equations that describe the characteristics of the device. One of the most popular 

algorithms is the Newton-Raphson algorithm. It is obvious that a set of nonlinear differential 

equations needs to be used to describe the nonlinear state-variable model for the device. This set of 

differential equations can be transformed into a set of nonlinear algebraic equations by using the 

predictor-corrector algorithm [59]. The Newton-Raphson algorithm is then applied to solve for 

this set of nonlinear algebraic equations. In order to assure that the solutions for the nonlinear 

equations always converge to correct values, a globally convergent method based on the Newton's 
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method [60] is employed in this paper. Some of the basic concepts for this convergent method will 

be discussed in Section III. To consolidate the validity for the use of state-variable technique along 

with the FDTD algorithm in performing full-wave analyses on microwave circuits, several 

numerical examples will be presented in Section IV. Finally, the conclusion is drawn in Section V. 

2. The Current-Source Approach 

For the sake of discussion and simplicity, it is assumed that the lumped elements are z-directed. 

The integral form for Ampere's law is   ^ 

§H-dl=-\\eE-ds+\\j(E)-ds (88) 

ess 
Assume a lumped device is placed on an edge of the primary grid. Then (88) is applied to the 

1 secondary grid face through which the edge passes. To represent this more conveniently, (88) is 

rewritten as 

where Itot is the total current given by the line integral in (89) and is performed about secondary 

grid face, CF = eAI Az, where A is the cross area of the face and &z is the length of the device 

loaded edge, and Idev(V) is the current flowing through the device. The equivalent circuit 

representing (89) is illustrated in Fig. 20. Thus, given Itot, a state variable approach will be used 

to solve (89) for the voltage V. Subsequently, V will be used to calculate the electric field on the 

edge. 

3. State-Variable Solution 
A state variable method will be used to solve for the device current and the port voltage as 

illustrated in Fig. 20. The means by which the solution is derived will differ for linear and 

nonlinear devices. Initially, assume that the edge is loaded with a linear device, such as a lumped 

passive circuit. In such a case, the state equation can be generically stated as: 

x = Ax(t) + bu(t) (9°) 
where x is the state-variable vector, A is a square matrix, b is a vector associated with the excitation 

u(t). There exist well-known analytical solutions to (5) for canonical problems [59]. However, 

(5) is solved numerically for sake of generality. Using the second-order finite-difference scheme, 

(5) is written as 

£A-+1=(/+4^ jf + AL^+S) (91) 

where / is an identity matrix and the superscript indicates the time step. Equation (91) is an implicit 

scheme. Although, the order of A is assumed to be small can be solved using LU factorization. It 

should be noted that if there is more than one source then b will become a matrix. 
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It can be shown that in some instances, directly incorporating (91) into the FDTD algorithm can 

lead to instability. For example, terminating a microstrip line by a linear inductive load with a very 

small inductance can lead to instability. To guarantee a stable solution for all linear networks, the 

first-order backward scheme (Euler's algorithm) can be used. This leads to 

' (I-AtA)xn+x=xn+Atbun+l. (92) 

For the nonlinear case, the state equation is written in the form of [59] 

x = f(x,u). <93) 
To solve the nonlinear state equation, the predictor-corrector algorithm coupled with the Newton- 

Raphson algorithm is used. In particular, the first-order Adams-Bashforth predictor and the first- 

order Adams-Moulton corrector [59] are used: 

predictor: 

x"+[W=x"+Atf(x",un) (94-a) 

corrector: 

/+1-W=x" + Al/(/l'(Hl«"+1) (94.b) 

where the superscript in the parenthesis designates the//; iteration at the n+l time step. Notice that 

(94.a) is an explicit algorithm while (94.b) is an implicit one. Note also that the set of differential 

equations (93) has been transformed into a set of algebraic equations in (94.a) and (94.b). Other 

higher order predictor-corrector algorithms could also be used. However, the absolute stability 

regions for those higher-order algorithms are very restrictive [59]. It is found that the use of the 

second-order Adams-Bashforth predictor and the use of the second-order Adams-Moulton 

corrector will lead to late time instability when they are applied to solve the nonlinear state 

equations for the large signal model of a GaAs MESFET amplifier. It is important to realize that 

the predictor-corrector algorithm itself can be used to solve for a set of nonlinear differential 

equations without the aide of the Newton-Raphson algorithm. However, a systematic strategy 

should be used to assure the convergence of the solutions to the nonlinear differential equations. A 

globally convergent method was proposed in [60] and is used in this paper. 

The state equation (93) can be written as 

x-f(x,u) = 0. (95> 

Applying the first-order Adams-Moulton algorithm (94.a) to (95) leads to 

F(xn+l,u"+l) = x"+{-xn-Atf(x"+\un+l) = 0. (96) 

Expanding (96) into a Taylor's series yields solutions for the state variables at the n+l time step 

[61], namely 

JSx = -F(xn+\u"+x) (97-a) 

x"+l = x"Ü + Sx (97-b) 
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where J is the Jacobian matrix. Note that the predictor (94.a) can be used as an initial guess for 

x0id in the Newton-Raphson algorithm. 
The problem of solving the set of nonlinear equations (96) is the same as that for solving an 

unconstrained minimization problem of the form 

g=l-F-F. (98) 
2 

From a geometrical standpoint, it is obvious that the step 5x should lead the function g to its 

descent direction at each iteration. Due to the quadratic convergence of the Newton method, it is 

always a good idea to try the full Newton step first. If the solution is not close enough to the 

minimum of g, the full Newton step may not necessarily decrease the function [60, 61]. However, 

since the Newton step is a descent direction for g, it is guaranteed that an acceptable step can be 

found for reducing the function by backtracking along the Newton direction. The backtracking 

algorithm is based on line searches. The solution (97.b) is then rewritten as 

^-Cd'+AA       0<A<1 (99) 

where p = Öx. It is not sufficient to require merely that g(x'£l) < g(x'^J) since this criterion can 

fail to converge to a minimum of g [61]. A better strategy is to require the average rate of decrease 

ofgbe some fraction a of the initial rate of decrease Vg-p. Mathematically, this is written as [60, 

61] 

g{4ä)M^)^Mx^-^\       0<a<l, (100) 
Typically a good choice for a is 10-4 [61]. 

Next, the backtracking algorithm must be developed. The strategy for a useful and practical 

backtracking routine is to define the function [60,61] 

u{l) = ^+Xp) (101) 

so that ■  N      . 

u'{X) = Vg-p. (102) 

The function «(A) is modeled with the most current information if a backtrack is needed and A is 

chosen to minimize the model [61]. As mentioned earlier, the first step is always the full Newton 

step A = 1. If this step does not meet the criterion in (100), a quadratic model is used to compute 

the appropriate value for X. That is [60]: 

u(X)*[u(l)-u(0)-u'(0)]X2+u'(Q)X+u(0). (103) 

Notice that w(0) and u'(0) are known and w(l) has just been computed. Taking the derivative of 

(103) and setting the derivative to zero yields the minimum point for (103) [60] 

X _ M'(°) " (104) 
2[W(1)-M(0)-M'(0)]' 
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If (104) still does not satisfy (100), subsequent backtracks will be needed. For the subsequent 

backtracks, «(A) is modeled as a cubic function [60] 

uCuhic(X) = aX3+bX2+u'(0)Pi+u(0). (105) 

where 

1 
At — A- 

I/AJ -\ik\ 
~A-2 / Aj     Aj / A 2 

(106) 
~u(X{)-u'(0)?n-u(0) 

_W(A2)-M'(0)A2-M(0)_ 

AI and A2 are the most recent previous two values for A. The minimum point for the cubic model 

in (105)is[60] 

A = 
b + jb£-3au'(Q) 

3a 
(107) 

To avoid extremely small steps, a lower bound of 0.1 and an upper bound of 0.5 should be set for 

A [60]. 

4.  Linear Loads v 

The state variable equations can be easily derived for linear loads. For example, consider single 

lumped element terminations such as a resistor R, a capacitor C, or inductor L. The state variable 

equations would hence be: 
Linear Resistor: 

1 

Linear Inductor. 

1   , 
RCp'1-". ' CF'

tot 
(108.a) 

0 ~L' cF 

1 0 
L 

vcF 

}L 
+ 

1 

cF 
0 

Hot 
(108.b) 

Linear Capacitor: 

1      . 
/or 

(108.C) 
c+cF 

It is noted that for a network of linear lumped elements, state variable equations could be similarly 

derived. 

A Linear Amplifier 
A more interesting example of a linear load would be a linear amplifier. Specifically, consider 

the small signal analysis of a GaAs MESFET amplifier. The equivalent circuit for this device is 

illustrated in Fig. 21.  The state equation in (90) was used, with the exception that b is now a 

matrix B. To this end, from the circuit in Figs. 20 and 21 it can be shown that: 
if 

CF 
VC s5 vcgd   

vc ds 
vc DF 

lL      lL 
(109.a) 
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'     0 0 0                  0 

r 

0 -i/cCf- 0 

0 -1 / RiCg, 1 / RtCgs        1 / RiCp 0 0 0 

0 \IRCg, -1/RfCgj    -MRiCgd 0 1/CW 0 

A = 0 (l-gM/RiC* -1/Ä,.Q,   -URükCd* 0 i/Q, -i/Q, 9 

0 0 0                  0 0 0 \icDF 

Lds/LT 0 -LdsILT      -LdILT -LJLT -kg'W L2g/LT 

- 
_Ls'LT 0 — Z,?  1 Lj                   Lg 1  Lf -Lgs 1 LT Lld 1 LT 

(109.b) 

\1/-CGF' 0 
/ 

0 0 _ 

B = 

0 

0 

0 

0 

0 

i/cDF 

5 1/(0 = • (109-c) 

0 0 

0 0 

CGF and CDF are the net cell capacitances at the gate port and the drain port, respectively. 

Specifically, assuming that the drain and gate ports are distributed over a number of cells, these 

represent the total networked cell capacitance, with each computed as in (89). The quantities in the 

excitation vector IGate and Iorain are the net equivalent current sources computed by the line 

integrations of the magnetic fields about the gate port and the drain port, respectively. Some of the 

other elements in A are defined as: 

Lds = Ld + Ls,   Lgs=Lg + Ls,    Ria = RiR* / (% + Rds)> 

LXg = RgLd + RgLs + RsLd,    L2g = RsLd - RdLs, 

'-\d 

L/'T 

As an example, a GaAs MESFET was simulated using the FDTD algorithm. The geometry of 

the device is illustrated in Fig. 22. The amplifier was matched at 6 GHz. For this example, the 

circuit parameters were chosen yielding S-parameters at 6 GHz: 

Uj = KK - RgLs,     L2d = RdLg + RdLs + RsLg, 
(110) 

= LgLd + LgLs + LdLs. 

&, =0.636Z- 171.3° J!2 0.069Z16.30,   521 = 2.061Z28.630,   S22 = 0.524Z ■95.73° 

For these S-parameters, the transistor is unconditionally stable and a simultaneous conjugate 

match is possible. Balanced shunt stubs and series lines are used to design the input and output 

matching networks. The maximum transducer gain for the amplifier is 11.137 dB. The layout is 

illustrated in Fig. 22. The gate and drain ports of the transistor are replaced by equivalent current 

sources, as illustrated in Fig. 20. These circuits are loaded with the small signal equivalent model 

in Fig. 21. The ports actually span the entire width of the strip. Thus, I Gate and I Drain represent 

the total current entering the gate and drain ports. This can be done by adding the currents flowing 
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along each edge of the port, as calculated by the line integrals of the magnetic field, or by 

calculating the line integral about the entire port. Similarly, the gate and drain capacitance are 

calculated as the total parallel capacitance across the port width. The source pads are terminated to 

ground by a via. 
Equation (91) was used to solve for the state model of the small signal circuit. The device was 

excited by a broad band source and the S-parameters were then extracted over a broad frequency 

range. These results are illustrated in Fig. 23. The results are also overlaid with the computation 

done using an empirical based analysis using HP-EESOF™, which modeled both the linear 

MESFET amplifier with the same circuit parameters and the microstrip circuit. The results 

compare amazingly well. 

5: Nonlinear Loads 
To demonstrate the nonlinear solution of the state-variable equations, two examples will be 

illustrated. A nonlinear diode and a nonlinear MESFET amplifier. The equivalent circuit used for 

the nonlinear diode is illustrated in Fig. 24 [59]. The governing equations for this model are: 

( <?v< 

h = h 
dp 

c"V_l 

qvc. 
■tip 

r D r q      I cMkpT (111) C*-7 Y'      df~2nMkbTFl°e        ' (      ' 

This is described in detail in [59]. The state variables for this model are vCdp, vCf., and //..  The 

state equation derived from the circuit in Fig. 24 is then: 

V; 1        ;   | l / (112.a) vcF - ~ r   ,r      lL + r     r      hot- v 

^F + L-pack f-F + ^pack 

VVcdp 

-27zMkbTF(vz-vCdByi0(eM>T-\) + 2xMkhTF(vz-vCdp)
piL 

(Vr _ v     )Pqlo{eMkhT -1) + D2nMkbTF 

4=_i_vc L-v     -&-iL. (H2.C) 
^pack '-'pack ^pack 

This set of nonlinear differential equations is solved using the algorithm described in Section 3. 
As a simple example, a 50 Q microstrip line was terminated by a nonlinear diode. The 

dimensions of the uniform microstrip line are identical to that feeding the MESFET amplifier 

example. The nonlinear model illustrated in Fig. 24 was used with tol = 10"4, D = 10"n, 

I0= 1 pA, vz = 0.7 V, T = 298 K,p = 0.5, M = 1.179, F = 1 GHz, CF = 5.9976 X 10'15 F, 

Lpack =.10 pH, Cpack = 0.1 pF, and RB = 0.1 Q. The results of the FDTD simulation are 

illustrated in Fig. 25. A 2 V sinusoidal voltage pulse with a frequency of 10 GHz is used to excite 
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the microstrip line. The amplitude of the pulse is ramped up using a half-Gaussian pulse to avoid 

high-frequency transients. It is observed from Fig. 25 that the voltage across the diode is clamped 

at about 0.7 V. 
The final example is that of a nonlinear MESFET amplifier. The geometry of the amplifier is 

that of the linear amplifier presented in Fig. 22. The equivalent circuit used is also that of Fig. 21. 

However, the voltage-controlled current source Ids and the gate to source capacitor Cgs are now 

treated as nonlinear terms. Specifically, [58] 

^(vcgi>vQs) = (^o+^iVy +A2v
2

G,s,+A3v
3

G,s.)tmh(avcJ, (H3.a) 

r (v   ^ cg™  (H3.b) Wvc')_fVS" 
The parameters used in (113.a) and (113.b) for the example illustrated below were the same as 

those presented in [58]. 
The approach used in [58] is based on the voltage-source formulation. The approach used here 

is based on the current-source formulation. This has proven to be a more convenient approach for 

implementation, and the same level of accuracy is achieved. Then, from Fig. 22, the state 

equations are derived as: 

v=K+/ö4^' (114-a) 

K = (-%+ vcsd + VQ, )^-vc^0«/q>/. . c114-b) 

^»K-V^-V^+MJA7^' (114'C) 

i   i ^ 
VClk-Ids+hg-kd 

J 

(114.d) 

VcDF={kd+Idrain)ICDF, , (ll4-e) 

iLg =|-Vc„-Vc4 +Vcff-4vCor-Vil' + V^]/Ir' (114'f) 

^ = 
ILT, (H4.g) LSVCGF ~ LsvCgd + LgvCds - LgsvCDF + LldiLg - L2(liLj 

where several of the quantities are defined in (110). The Jacobian matrix J defined in (97.a) is 

computed using the forward-finite-difference method [60]. 

A simulation of a nonlinear transistor or amplifier such as the MESFET using the FDTD or PGY 

methods would proceed as follows: 1) Set up the DC bias by directly applying DC sources at the 

gate port and the drain port. Note that the DC sources are ramped up using a half-Gaussian pulse 

and the FDTD simulation is run until a stead state response is achieved. 2) The AC source is 

superimposed over the DC source once a DC steady state is reached. 3) The total voltages at the 
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input and output ports (DC+AC) are calculated. 4) Repeat steps 1-3 but without turning on the 

steady state response. 5) The AC responses are obtained by subtracting the time responses in step 

4 from those computed in steps 1-3. 

A nonlinear MESFET amplifier was simulated using the FDTD method. The example is similar 

to that presented in [58]. The same mesh dimensions used for the linear amplifier (Fig. 22) were 

used for this case. A 10 cell PML was used on all walls (except for the ground plane) to terminate 

the mesh. For this example, the DC biasing voltages used were VQS - -0.81 V, and VDS = 6.4 V. 

The AC source signal was a modulated Gaussian pulse with center frequency fm = 6 GHz. The 

amplitude of the source was quite small so that the device was operating in a linear region. Thus, 

broadband information was extracted. The results of the simulation are illustrated in Fig. 26. It is 

observed that the device is matched at 6 GHz and has a gain of 12 dB at this frequency. 

Comparing these results to those published in [58] demonstrates excellent agreement. 

[tot 

'dev 

1   +    " 

T)     V'-TCF 

n 
Equivalent Device Model 

Fig. 20     Equivalent circuit for the current-source state variable model. 
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+ c 
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'äs 
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Fig. 21     The small signal equivalent circuit model used for the GaAs MESFET amplifier. 

PML 

PML 

H 
13 D 

PML 

PML 

Fig. 22 The layout for the MESFET amplifier. The microstrips have 50 Cl characteristic 
impedances and are printed on a 31 mil substrate with er = 2.23. The FDTD model had 
a spatial discretization of Ax = Av = 0.3000875 mm, Az = 0.15748 mm, and a time 
step of to = 4.011 X 10"13 s was used. This lead to 8 cells across the microstrip width 
and 5 cells through the substrate. 
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Fig. 23     The magnitude of the S-parameters of the linear MESFET amplifier computed by FDTD 

with the state-variable model and compared by computations using HP-EESOF™. 

Fig. 24     Equivalent circuit for the diode model. Both Cpack and Lpack are introduced to model 
parasitic packaging affects. 
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Fig. 25     Voltage across the nonlinear diode terminating a 50 ohm microstrip line. 
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Fig. 26     The magnitude of the S-parameters computed by the FDTD simulation for the 
nonlinear MESFET amplifier. 
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